Native Pancreas

Image

Native Pancreas

Pulsed focused ultrasound (pFUS) utilizes short cycles of sound waves to mechanically shake cells within tissues which, in turn, causes transient local increases in cytokines, growth factors and cell adhesion molecules. Although the effect of pFUS has been investigated in several different organs including the kidney, muscle and heart, its effect on the pancreas has not been investigated. In the present work, we applied pFUS to the rodent pancreas with the following parameters: 1.1-MHz frequency, 5-Hz pulse repetition frequency, 5% duty cycle, 10-ms pulse length, 160-s duration. Low-intensity pFUS had a spatial average temporal average intensity of 11.5 W/cm2 and a negative peak pressure of 3 MPa; high-intensity pFUS had a spatial average temporal average intensity of 18.5 W/cm2 and negative peak pressure of 4 MPa. Here we found that pFUS changed the expression of several cytokines while having no effect on the underlying tissue histology or health of pancreatic cells (as reflected by no significant change in plasma levels of amylase and lipase). Furthermore, we found that this effect on cytokine expression in the pancreas was acoustic intensity dependent; while pFUS at low intensities turned off the expression of several cytokines, at high intensities it had the opposite effect and turned on the expression of these cytokines. The ability to non-invasively manipulate the microenvironment of the pancreas using sound waves could have profound implications for priming and modulating this organ for the application of cellular therapies in the context of both regenerative medicine

Media Contact

Jessica
Editorial Assistant
Pancreatic Disorder and Therapy